Diagnosing Sarcoma

Sarcoma develops in connective tissues, such as the bone, cartilage or muscle, and can be diagnosed with a variety of tests.

DIAGNOSIS OF SARCOMA involves a spectrum of tools. These techniques serve to confirm and subclassify the sarcoma type or to distinguish it from other cancers or benign scarring.

A. **HISTOLOGY** establishes a sarcoma diagnosis by examining the appearance of cancer cells under a microscope.

B. **STANDARD IMMUNOHISTOCHEMISTRY**, a widely used staining technique, can identify a specific protein within the nucleus, cytoplasm or on the surface of the cancer cell.

C. **CHROMOSOMAL KARYOTYPING** reveals chromosomal translocations and deletions indicative of certain types of sarcoma.

D. **FLUORESCENT IN SITU HYBRIDIZATION (FISH)**, a more sensitive test than karyotype analysis, uses molecular probes to detect genetic abnormalities. Another more sensitive test, reverse transcriptase polymerase chain reaction (RT-PCR), detects small deletions and point mutations.

Sarcoma develops from the cells that originate from the mesoderm, a germ layer that develops from the embryo along with the endoderm and ectoderm.

THE MESODERM gives rise to all connective tissues, including bone, muscle and blood vessels, as well as fat.